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ABSTRACT

It is shown that modeling of step discontinuities in
cylindrical dielectric loaded waveguides excited in hybrid
modes, using mode matching cannot converge unless com-
plex modes are included in the field expansions. If the
parameters of the structure and operating frequency allow
the existence of complex modes, then the purely propagat-
ing and purely evanescent mode fields are not a complete
set, unless complemented by the complex mode fields.

Numerical results are presented that clearly illustrate the
role of the complex mode fields in step discontinuity mod-
eling.

1. INTRODUCTION

It has been known [1]-[3] that inhomogeneously filled
waveguides can support, in addition to the evanescent and
the propagating modes, complex modes, characterized by
complex propagation constants. Recently, generalized rig-
orous analysis of lossless inhomogeneously filled waveg-
uides [4], and numerical methods for the investigation of
their properties {5] have been presented, which derived
many important properties of complex modes. Generally,
numerical search for the propagation constants of complex
modes is a much more difficult problem than for the nor-
mal propagating and evanescent modes. Complex modes
usually exist for very limited ranges of structure parame-
ters and frequencies. When solving for discontinuity prob-
lems in guiding structures, which could support complex
modes one is always faced with the problem of whether
it is necessary to consider and include complex modes in
the solution. This question has been recently addressed
for the problem of finline discontinuities [6], where it was
shown that ignoring a complex mode results in violation
of complex power conservation across the discontinuity.

This paper analyzes the step discontinuity problem
in a dielectric loaded waveguide, and the role of complex
modes in the solution of such a problem. The general struc-
ture under consideration is shown in Figure 1. It consists
of two semi-infinite circular dielectric loaded waveguides
of different cross sectional dimensions joined at the plane
z=0. A single hybrid mode of unit amplitude (HE,,,) is
incident from z < 0 on the discontinuity. It is desired to de-
termine the amplitudes of all the reflected and transmitted
hybrid modes. In particular, if complex modes can exist
in either or both waveguides, and these complex modes
are included or excluded from the solution, what are the
difference in the resulting scattering matrices?

Before presenting the solution using mode matching,
the properties of complex modes on cylindrical dielectric
loaded waveguides are summerized and typical numerical
data on these modes are presented.

GUIDE

Fig.1 Step discontinuity at the junction between
two semi-infinite dielectric loaded waveguides
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2. COMPLEX MODES ON DIELECTRIC
LOADED WAVEGUIDES

Complex modes are characterized by a complex prop-
agation constant v which is obtained by searching for com-

plex roots of the characteristic equation [7] for hybrid modes.

Since the characteristic equation is real even function of =,
its complex roots occur in conjugate pairs. Further,if yisa
root, then (-7) is also a root, it therefore results that there
is always a quadruple of complex roots: ++ and +v*. In an
infinite guide with no sources at infinity, a combination of
a pair of complex conjugate modes must always be present.
This pair will only carry reactive power, no net real average
power. Typical (w — §) diagrams for two dielectric loaded
waveguides with parameters that allow complex modes to
be present are shown in Figs. 2 and 3. In these figures, the
propagation constant ¥ = a+jf of the hybrid modes with
angular variation e/? in the dielectric loaded waveguide are
plotted versus frequency. The solid curve is either purely
real attenuation constant (aa) or purely imaginary propa-
gation constant (Ba). The dotted curves are the complex
propagation constant ya. Complex propagation in Fig. 3
occurs in the frequency ranges from 1.7 GHz < f < 3.01
GHz and 5.22 GHz < f < 5.64 GHz for the hybrid modes
(HE11,HE:;) and (HE;5,HE1¢) respectively. It has been
shown [4] that the complex modes are linearly independent
from all other propagating and evanescent modes occurring
at the same frequency. Therefore to expand any arbitrary
field over the cross section of the dielectric loaded waveg-
uide at any frequency requires the inclusion of any complex
modes that may exist. All the modes have been shown to
be orthogonal to each other over the cross section of the
guide,

The above properties are used in the following section
to obtain a model for the step discontinuities of the di-
electric loaded waveguide shown in Fig. 1 using the mode
matching technique.

3. DISCONTINUITY CHARACTERIZATION

Consider a hybrid HE,,, mode incident from 2 < 0
on the step discontinuity of the two semi infinite dielectric
loaded waveguides shown in Fig. 1. Due to this disconti-
nuity reflected and transmitted fields will be generated in
the regions z < 0 and z > 0 respectively. All the fields

will have the same azimuthal variation (e/™¢) as the inci-
dent hybrid mode. In order to calculate the reflected and
transmitted flelds the total transverse fields are expanded
in terms of the appropriate hybrid waveguide modes on
both sides of the discontinuity. Thus: '

For z < 0.
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Fig. 2 (w — B) diagram for the region z < 0.
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For z > 0.
E, = ) B épi 7 "P+* (2-a)
k

H, = ZBk hpy e~ 7B** (2-9)
k

where é4;, 7LAJ-, YAjs €Bk, ilBk, ~Br, are the transverse
electric and magnetic fields and the propagation constants
of the hybrid modes in the regions z < 0 and z > 0 respec-
tively.

Applying the boundary conditions at z=0 that the tangen-
tial electric and magnetic fields are continuous and using
the orthogonality relationships of the hybrid modes, an in-
finite system of equations can be obtained in which the
unknowns are the expansion coefficients A; and By. Nu-
merical solution of this system is achieved by truncating
the infinite matrix and solving the resulting finite system
of linear equations.

If the modes included in equations 1 and 2 are com-
plete sets (which must include any complex modes), then
the solution for the reflected and transmitted field coeffi-
cients will always converge to the correct answer. If the
complex modes are not included the solution may not con-
verge or may converge to the wrong answer.

A numerical example illustrating the above analysis is
presented. The (w — 3) diagram of the waveguides in the
region z < 0 and z > 0 are shown in Fig. 2 and Fig. 3
respectively. The solutions are obtained with and without
the inclusion of the complex modes. To check the validity
of the solution, the total fields were computed from the
coefficients of expansion and the boundary conditions on
these fields at z=0 are verified. A quantitative measure
of the error in satisfying the boundary conditions in the
electric and magnetic field components used in the compu-
tation is defined by:
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Fig. 5.a Variation of the percentage error in field
intensity with number of modes when complex modes
are included.

_ 4.[5 |(field component at z = 0%) — (field component at z = 0~)|* dS

[ s |(field component at z =0+) + (field component at z = 0+)|° dS

where S is the guide cross section. It was found that when
the complex modes are not included, the boundary condi-
tions at z=0 are not satisfied regardless of the number of
modes included in the solution as shown in Fig. 4. On the
other hand, when the complex modes are included in the
expansion, the boundary conditions are satisfied and the
error in the boundary conditions decreases as the number
of modes is increased as shown in Fig. 5.a and Fig. 5.b.
Complete scattering matrix which characterizes the
step discontinuity is easily obtainable from the results of
the above analysis. Typical result showing the variation of
the scattering matrix of a discontinuity is shown in Fig. 6.
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Fig. 5.b Variation of the percentage error in field
intensity with number of modes when complex modes
are included.

4. CONCLUSION

It is shown through numerical calculations of specific
examples that complex modes are part of a complete set
that represent the total fields in dielectric loaded waveg-
uides. Solution of the step discontinuity problem in a di-
electric loaded waveguide has been obtained using mode
matching and verification of the accuracy and convergence
of the solution has been presented. A circuit model for
the step discontinuity in a hybrid mode dielectric loaded
waveguide will be presented.

Although the examples presented are in the microwave
region, and for the H E;;-mode, this type of transmission
medium is useful for millimeter, submillimeter, and opti-
cal wavelengths. In order to reduce the transmission loss,
higher order modes may be used. The technique presented
for the discontinuity characterization is general and appli-
cable for any mode and frequency band.

Amplitude Phase

1.00 T — — — »_Aﬁn O = — _ B 2.x7
- T T T
7 // 1577 25n s L
W iSnl=1Snl L
- a = .1845in [
ro75in T 1.5
0.75 Amplitude b=27678in |
| c=d=.36%n
F T Phase & =225 =
§ 50 R
0.50 —f=——"—"7 — 1.0
] ISl = 1Sz i
0.25 — 0.5
T \ L
B S o
. S
0.00 T T T T T T T 0.xx
8 9 10 11 12
F (GHz)

Fig. 6 Variation of the scattering parameters vs. frequency.
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