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ABSTRACT

It is shown that modeling of step dlscontinuities in

cylindrical dielectric loaded waveguides excited in hybrid

modes, using mode mat chlng cannot converge unless com-

plex modes are included in the field expansions. If the

parameters of the structure and operating frequency allow

the existence of complex modes, then the purely propagat-

ing and purely evanescent mode fields are not a complete

set, unless complement ed by the complex mode fields.

Numerical results are presented that clearly illustrate the

role of the complex mode fields in step discontinuity mod-

eling.

1. INTRODUCTION

It has been known [I]- [3] that inhomogenecmsly filled

waveguides can support, in addition to the evanescent and

the propagating modes, complex modes, characterized by

complex propagation constants. Recently, generfllzed rig-

orous analysis of lossless inhomogeneously filled waveg-

uides [4], and numerical methods for the investigation of

their properties [5] have been presented, which derived

many import ant properties of complex modes. Generally,

numerical search for the propagation constants of complex

modes is a much more difficult problem than for the nor-

mal propagating and evanescent modes. Complex modes

usually exist for very limited ranges of structure parame-

ters and frequencies. When solving for discontinuity prob-

lems in guiding structures, which could support complex

modes one is always faced with the problem of whether

it is necessary to consider and include complex modes in

the solution. Thki question has been recently addressed

for the problem of finline dkontinuities [6], where it was

shown that ignoring a complex mode results in violation

of complex power conservation across the discontinuity.

This paper analyzes the step discontinuity problem

in a dielectric loaded waveguide, and the role of complex

modes in the solution of such a problem. The general struc-

ture under consideration is shown in Figure 1. It consists

of two semi-infinite circular dielectric loaded waveguides

of different cross sectional dimensions joined at the plane

z=(J. A single hybrid mode of unit amplitude (HE~n) is

incident from z <0 on the discontinuity. It is desired to de-

termine the amplitudes of all the reflected and transmitted

hybrid modes. In particular, if complex modes can exist

in either or both waveguides, and these complex modes

are included or excluded from the solution, what are the

difference in the resulting scattering matrices?

Before presenting the solution using mode matching,

the properties of complex modes on cylindrical tlelectric

loaded waveguides are summarized and typical numerical

data on these modes are presented.
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Flg.1 Step dlacontlnuity at tha junction between
two aeml-infinite dielectric ioaded waveguidea
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2. COMPLEX MODES ON DIELECTRIC

LOADED WAVEGUIDES

Complex modes are characterized by a complex prop-

agation constant ~ which is obtained by searching for com-

plex roots of the characteristic equation [7] for hybrid modes.

Since the characteristic equation is real even function of T,

its complex roots occur in conjugate pairs. Further, if 7 is a

root, then (-7) is also a root, it therefore results that there

is always a quadruple of complex roots: +7 and +T*. In an

infinite guide with no sources at infinity, a combination of

a pair of complex conjugate modes must always be present.

This pair will only carry reactive power, no net real average

power. Typical (w –@) diagrams for two dielectric loaded

waveguides with parameters that allow complex modes to

be present are shown in Figs. 2 and 3. In these figures, the

propagation constant 7 = a+j~ of the hybrid modes with

angular variation e~~ in the dielectric loaded waveguide are

plotted versus frequency. The solid curve is either purely

real attenuation constant (au) or purely imaginary propa-

gation constant (/3a). The dotted curves are the complex

propagation constant -ya. Complex propagation in Fig. 3

occurs in the frequency ranges from 1.7 GHz ~ f < 3.01

GHz and 5.22 GHz ~ f <5.64 GHz for the hybrid modes

(lf-Ell ,IY1312) and (H-E15,H,91C) respectively. It has been

shown [4] that the complex modes are linearly independent

from all other propagating and evanescent modes occurring

at the same frequency. Therefore to expand any arbitrary

field over the cross section of the dielectric loaded waveg-

uide at any frequency requires the inclusion of any complex

modes that may exist. All the modes have been shown to

be orthogonal to each other over the cross section of the

guide.

The above properties are used in the following section

to obtain a model for the step discontinuities of the &l-

electric loaded waveguide shown in Fig. 1 using the mode

mat thing technique.

3. DISCONTINUITY CHARACTERIZATION

Consider a hybrid HEmm mode incident from z < 0
on the step discontinuity of the two semi infinite dielectric

loaded waveguides shown in Fig. 1. Due to this disconti-

nuity reflected and transmitted fields will be generated in

the regions z < 0 and z > 0 respectively. All the fields

will have the same azimuthal variation (e~@’ ) as the inci-

dent hybrid mode. In order to calculate the reflected and

transmitted fields the total transverse fields are expanded

in terms of the appropriate hybrid waveguide modes on

both sides of the discontinuity. Thus:

For z <0.
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For z >0.

~~ = ~ Bk tBk e“y”’z (2 -a)

k

Ht = ~ Bk )@k13-7B’Z (2 -b)

k

where ?Aj, kAj, vAj, ~Bk, ~Bk, 7Bk are the transverse
electric and magnetic fields and the propagation constants

of the hybrid modes in the regions z <0 and z >0 respec-

tively.

Applying the boundary conditions at z=O that the tangen-

tial electric and magnetic fields are continuous and using

the orthogonalit y relationships of the hybrid modes, an in-

finite system of equations can be obtained in which the

unknowns are the expansion coefficients Aj and Bk. Nu-

merical solution of this system is achieved by truncating

the infinite matrix and solving the resulting finite system

of linear equations.

If the modes included in equations 1 and 2 are com-

plete sets (which must include any complex modes), then

the solution for the reflected and transmitted field coeffi-

cients will always converge to the correct answer. If the

complex modes are not included the solution may not con-

verge or may converge to the wrong answer.

A numerical example illustrating the above analysis is

presented. The (w – ~) diagram of the waveguides in the

region z < 0 and z > 0 are shown in Fig. 2 and Fig. 3

respectively. The solutions are obtained with and wit bout

the inclusion of the complex modes. To check the validity

of the solution, the total fields were computed from the

coefficients of expansion and the boundary conditions on

these fields at z=O are verified. A quantitative measure

of the error in satisfying the boundary conditions in the

electric and magnetic field components used in the compu-

tation is defined by:
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~ = ~ f.s I(fieJd component at z = 0+) - (field component at z = 0-)12 dS

~.s I($iezd component at .Z = 0+) + (field component at z = 0+)12 dS

where S is the guide cross section. It was found that when

the complex modes are not included, the boundary condi-

tions at z=O are not satisfied regardless of the number of

modes included in the solution as shown in Fig. 4. On the

other hand, when the complex modes are included in the

expansion, the boundary conditions are satisfied and the

error in the boundary conditions decreases as the number

of modes is increased as shown in Fig. 5.a and Fig. 5.b.

Complete scattering matrix which characterizes the

step dlscont inuit y is easily obtainable from the results of

the above analysis. Typical result showing the variation of

the scattering matrix of a discontinuity is shown in Fig. 6.



0.20

0.1s

8
:

$ 0.10
j
g
‘a,

0.05

0.00

F=5.2 GRz

\

\

I 1 I ( I 1 1 1 1 I I 1 1 I 1 I

10 15 20 25 30

Number of modes

Fig. 5.b Variation of the percentage error in field
intensity with number of modes when complex modes

are included.

4. CONCLUSION

It is shown through numerical calculations of specific

examples that complex modes are part of a complete set

that represent the total fields in dielectric loaded waveg-

uides. Solution of the step discontinuity problem in a di-

elect ric loaded waveguide has been obtained using mode

mat thing and verification of the accuracy and convergence

of the solution has been presented. A circuit model for

the step discontinuity in a hybrid mode dielectric loaded

waveguide will be presented.

Although the examples presented are in the microwave

region, and for the H.E1 l-mode, this type of transmission

medium is useful for millimeter, submillimeter, and opti-

cal wavelengths. In order to reduce the transmission loss,

higher order modes may be used. The technique presented

for the discontinuity characterization is general and appli-

cable for any mode and frequency band.
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